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Introduction

T WO equation eddy-viscosity turbulence models are among
the most widely used models today. The most popular is

the k-e model in one of its many different forms. However, a
significant number of alternative models have been developed,
both for physical and for numerical reasons. Those models are
designed to overcome some of the well-known shortcomings
of the k-e model.

One of the more successful of the alternative models is the
&-co model developed by Wilcox.1'2 It has the advantage that it
does not require damping functions in the viscous sublayer
and that the equations are less stiff near the wall. Further-
more, it has been designed to predict the proper wake strength
in equilibrium adverse pressure gradient boundary-layer
flows.

Very encouraging results for a variety of wall-bounded
flows have been reported by different authors.1"3 However,
when applied to free shear layers, a strong dependency of the
results on the freestream value of co has been found.2 To
investigate this disturbing feature of the equations more
closely, the self-similar equations for incompressible equi-
librium boundary layers, as well as for the far wake, have been
solved numerically. Different freestream values co/ have been
specified to determine its influence on the solution. From the
self-similar equations one can also get estimates for acceptable
values of co/. To show that the solution dependency of co/is not
simply a property of the self-similar equations, Navier-Stokes
computations have been performed for a flat plate boundary
layer that confirm the results.

Defect Layer and Far Wake Analysis
Wilcox has performed a defect layer analysis for the A:-co

model to investigate the model performance for equilibrium
boundary-layer flows. The analysis is based on a singular
perturbation solution with respect to the (small) ratio of the
friction velocity to the boundary-layer edge velocity uT/Ue. It
is further assumed that the Reynolds number based on dis-
placement thickness is high, Red*^<*>. The equations prescrib-
ing the self-similar far wake flow are identical to the equations
derived by Wilcox, if UT is replaced by u\ = Ue^Jd*/x. The
details of the analysis can be found in Ref. 1, and therefore
only a brief summary of the equations is given here. The
defect layer and far wake equations are as follows:
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where U\, K0, and WQ are the nondimensional defect velocity,
turbulent kinetic energy, and turbulent dissipation rate co,
respectively. 7V0 is the dimensionless eddy viscosity:

(2)IJ *S* WUeO W Q

whereas ar, j8r, and cor are defined as follows:

6*2 d<5* 0 <5* dp
= — -T~ > PT = — —Cf ax TW ax Cfur dx=* 0)

where 6* is the displacement thickness, TW is the wall shear
stress, and C//2 = (uT/Ue)2. The values of these quantities for
a zero pressure gradient boundary layer are OLT = 1, PT = 0, and
UT = 0. For the wake flow, they are: aT = 0, &T = 0, cor = - 0.25.

The constants in the A:-co model are

0 = 3/40, 0* = 0.09, K = 0.41, 7 = 5/9, a = 0.5, a* = 0.5 (4)

For boundary-layer applications, the equations must be
matched to the law of the wall,1 whereas symmetry conditions
are imposed on the wake center line. At the outer boundary
17^00, all three quantities are assigned small values:

, = 0, KQ = Kf9 WQ = Wf (5)

The equations are solved with a first-order upwind scheme
for the convection terms ^(d/drj) and central differencing for
the other derivatives. Following Wilcox,1 time derivatives are
added to integrate the equations. Highly accurate numerical
results were obtained by using up to 500 gridpoints in 17. Grid
independency was reached with about 100 gridpoints inside
the layer.

Results
The equations have been solved with different freestream

values Wf specified. Note that the WQ equation has two differ-
ent algebraic solutions in the freestream that are compatible
with the equilibrium assumption. One is Wf = 0 and the sec-
ond is

(6)

Although intermediate values are not strictly compatible with
the equilibrium assumptions, they will be included to show the
changes of the solution as Wf approaches zero (setting Wf
exactly to zero is not possible for numerical reasons).

Computations show that specification of values for
larger than Wa does not influence the results, as WQ falls to W
at the boundary-layer edge before approaching Wf>Wa out-
side the boundary layer. However, specifying smaller values
has a pronounced influence. Computations have been per-
formed with

Wf

Wf=Wa n =0, 1, 2, . . . (7)

The value of Kf was changed in a way to keep the freestream
value of the eddy viscosity at a low value of Nf = 10 ~4

(changes in Nf do not affect the solution, as long as it is small
compared with the values of TVo inside the boundary layer).
Figure 1 shows the results for the equilibrium boundary-layer
computations. The influence of Wfon the solution can be seen
most dramatically with regard to the eddy viscosity 7V0. 7V0
increases as Wf decreases and does not go to zero at the
boundary-layer edge 60.995. The influence on the mean flow
profile Ui(rj) is moderate, and that is the reason why the
freestream dependency is of little consequence for boundary-
layer flows. However, near the boundary-layer edge the solu-
tion changes from a profile with a sharply defined boundary-
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Fig. 1 Solutions of the defect layer equations with different free-
stream values for JF0, Wf = Wa\^~n, n =0, 1, 2, 3, . . ..
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Fig. 2 Solutions of the far wake equations with different freestream
values for WQ, Wf = Wa\^~n, n =0, 1, 2, 3, . . ..

layer edge, to one that approaches the freestream values
asymtotically as Wf decreases.

Figure 2 shows the solution for wake flows. The changes in
NQ are similar to the ones for the boundary-layer computa-
tions, only now the whole shear layer is affected because of the
missing wall influence. The velocity profile is also strongly
affected and shows a much larger spreading rate as Wf de-
creases. Again the sharp edge of the shear layer is lost, and all
variables approach their freestream values asymtotically.

Analysis of the defect layer equations shows4'5 that two
equation models generally produce solutions with a sharp
boundary-layer edge (discontinuous in the first derivatives).
This is also true for the design solution of the k-u model if
Wf=Wa. However, for the limiting case AT/ = 0 and Jf/ = 0,
no such solution exists and the solution for large ry becomes

The exponents are

- 2cor )/(27V0)

(8)

(9)

Since a is equal to a*, K0 and WQ decay in the same manner,
allowing for a constant eddy viscosity 7V0 = C2/C3 (see Fig. 2).
Note that the previous solution exists only if a = a*. If a is not
equal to a*, the solution has a sharp boundary-layer edge, but
a strong dependency of co/ remains.

Computations with the k-e model for the previous cases
show almost no dependency on the freestream values. As
pointed out in Refs. 1 and 6, the main difference between both
models is a term of the form

2(v + avt) - — —
1 dk 3co
-
k (10)

that is not included in the co equation (note that an additional
diffusion term appears if the diffusion constants are not
equal). In the self-similar limit, the expression in Eq. (10)
becomes

(11)Q dr/ drj

and has to be added to the left-hand side of the WQ equation.
Figure 3 shows computations for the wake flow with this

term included in the A:-co model. The main difference is that
the influence of Wf does not penetrate into the boundary
layer. The freestream dependency is thereby avoided. The
computations shown in Fig. 3 have been performed with the
constants of the Jones-Launder k-e model transformed to the
k -co model (the freestream dependency is also removed if the
original constants are used).

The inclusion of the term in Eq. (10), however, is not
desirable because it makes the A:-co model formally identical to
the k-e model and thereby destroys the advantages of the
model in the near wall region and for adverse pressure gradi-
ent boundary layers.

The argument can be made that the previous findings are
specific features of the self-similar equations and do not ap-
pear if the full equations are solved. To investigate this point,
flat plate boundary-layer computations based on the incom-
pressible Reynolds-averaged Navier-Stokes equations have been
performed. The freestream value co/ at the inflow boundary
was reduced to small values (note that the freestream value of
k was also reduced to keep the eddy viscosity in the freestream
small). The results are almost identical to the ones shown in
Fig. 1, thus providing further evidence that the similarity
solutions capture the essence of the problem.

The present results show that it is very important to specify
co/ appropriately at the inflow boundary. In cases where the
freestream values inside the computational domain cannot be
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Fig. 3 Solutions of the far wake equations with different freestream
values for WQ, Wf = H^IO-", n = 0, 1, 2, 3, . . . , 2<r7V0(l/#o) (d#o/
djy) (dHVdi?) is included in the WQ equation.
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sufficiently controlled by the inflow conditions alone, it may
be even necessary to impose a lower limit on co. Estimates
for those values can be obtained from the definition of W0
(Ref. 1) and from Eq. (6):

(12)

(ctT -fa-

For high Reynolds number boundary-layer flows, this gives
the following estimate:

(13)

where £/«, is the freestream velocity and L is a characteristic
length in the stream wise direction. In high Reynolds number
boundary-layer applications, these rather large values can be
specified because co inside the layer in still several orders of
magnitude larger and co/ is therefore relatively small. It is the
author's experience that the freestream dependency is no ma-
jor problem in boundary-layer computations and can be
avoided by specifying appropriate inflow conditions and/or
lower limits on co.

The problem is more severe in free shear layer applications
in which case the freestream value Wa is of the same order as
WQ (see Fig. 2) inside the layer, and therefore it is not appro-
priate to impose a lower limit. The inclusion of additional
terms in the co equation or changes in the expression for the
eddy viscosity might be necessary to ensure solutions that are
both insensitive to co/ and consistent with experiments.
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Stability of Plane Nonorthogonal
Stagnation Flow
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I. Introduction

T HE problem of stability of stagnation flow is of continu-
ous interest in aerospace applications mainly because this

flow well approximates flows around leading edges of airfoils.
It is widely believed that this flow is linearly stable.1 Recent

Received July 10, 1991; accepted for publication Aug. 14, 1991.
Copyright © 1991 by J. M. Floryan. Published by the American
Institute of Aeronautics and Astronautics, Inc., with permission.

* Professor, Department of Mechanical Engineering.

numerical simulations of Spalart2 show this flow to be also
nonlinearly stable. Experiments3 demonstrate close coupling
between the form of the oncoming disturbances and the sec-
ondary flow observed in the stagnation region; however, the
mechanism of this coupling is not completely understood.
Certain aspects of this coupling can be explained on the basis
of the "vorticity amplification theory."4 Possible roles of
surface roughness have been discussed in Ref. 5. It is likely
that the flow realized in experiments is nonorthogonal, or
perhaps disturbances swept toward the body produce instan-
taneous nonorthogonality, which is sufficient to trigger the
secondary flow. The objective of the present analysis is,
therefore, to determine stability characteristics of such a
nonorthogonal flow.

II. Analysis
We consider motion of a viscous fluid impinging obliquely

on an infinite flat rigid wall. The geometry of the flow and the
coordinate system are indicated in Fig. 1. The wall is in the
(x, z ) plane, and the mean flow is two dimensional in the (#, y)
plane. The oncoming flow has the form

= ax* + 2aHy* v* = -ay* (1)

i.e., it consists of a superposition of an irrotational stagna-
tion-point flow and a uniform shear parallel to the wall with
constant z component of vorticity (coz =2H). In the previous
equation, u and v denote velocity components in the (x,y)
directions, asterisks denote dimensional quantities, and a and
//are scale constants. The angle of inclination of the flow with
respect to the wall is /3 = arctan H~l.

We are interested in the character of the flow in the viscous
layer next to the rigid wall when the far- field approximation is
given by Eq. (1). This problem has been studied in Refs. 6-8.
The following presentation is limited to a short outline.

Boundary-layer thickness 6, upstream velocity V^, and dy-
namic pressure p V* associated with the orthogonal stagnation-
point flow are selected as the length, velocity, and pressure
scales, respectively. Here, d = (v/a)l/2 where v denotes kine-
matic viscosity and p stands for density. The Reynolds number
is defined as Re = V^d/v. Flow quantities are expressed as

9 V(x,y) = l/ReV0(y)

(2)

where U and V are the mean flow velocity components in the
(x,y) directions, P denotes the mean flow pressure, and

). If we define

~r >dy (3)

and substitute Eqs. (2) and (3) into the incompressible Navier-
Stokes and continuity equations, we find that F, G0, and U\
must satisfy

- 1^) + 1 = 0 (4a)

(4b)

(4c)
ay ay

dF " ' ~ (4d)

as y-+<x> (4e)

_
dy dy

F = —- = C/! = 0 a t j = 0dy

dF


